from sklearn.cluster import KMeans
import numpy as np
X = np.array([[1.713,1.586], [0.180,1.786], [0.353,1.240],
[0.940,1.566], [1.486,0.759], [1.266,1.106],[1.540,0.419],[0.459,1.799],[0.773,0.186]])
y=np.array([0,1,1,0,1,0,1,1,1])
kmeans = KMeans(n_clusters=3, random_state=0).fit(X,y)
print("The input data is ")
print("VAR1 \t VAR2 \t CLASS")
i=0
for val in X:
    print(val[0],"\t",val[1],"\t",y[i])
    i+=1
print("="*20)
# To get test data from the user
print("The Test data to predict ")
test_data = []
VAR1 = float(input("Enter Value for VAR1 :"))
VAR2 = float(input("Enter Value for VAR2 :"))
test_data.append(VAR1)
test_data.append(VAR2)
print("="*20)
print("The predicted Class is : ",kmeans.predict([test_data]))